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A classification of the even-even nuclei with Z - 20, A - Z -> 20, in terms of the 
boson representation of the sp(4, R) algebra is proposed. All even-even nuclei 
whose valence nucleons occupy the same major nuclear shell are united in two 
symplectic multiplets and thus treated in a unified way. A qualitative analysis 
of the spectrum of the 2 + energy levels of the ground (quasiground) bands is 
carried out. This analysis shows the expediency of the classification scheme 
proposed--a periodic structure of the same type is observed in the different 
shells. This periodic structure is especially stable in the case of the heavy and 
superheavy nuclei. 

1o I N T R O D U C T I O N  

The in t roduc t ion  o f  the F spin  in the  f r amework  o f  IBM-2 (Ar ima  
et aL 1977) has  in sp i r ed  the idea  o f  cons ider ing  in a unif ied way  the p rope r t i e s  
o f  sequences  o f  a tomic  nuclei .  Thus,  Har t e r  et al. (1985) and  von Bren tano  
et al. (1985) classify series o f  even -even  nucle i  in F - s p i n  mul t ip le ts .  The  
empi r i ca l  ana lys is  ca r r ied  out  in these  pape r s  reveals  the  advan tages  o f  this 
c lass i f icat ion.  This ana lys is  shows that  the low-ly ing  energy levels o f  the 
g r o u n d  and  g a m m a  b a n d s  o f  the nuclei  o f  a given F - s p i n  mul t ip le t  d e p e n d  
sl ightly,  a lmos t  cons tan t ly ,  on the th i rd  p ro jec t ion  o f  the  F spin.  

In  the presen t  p a p e r  we genera l ize  this a p p r o a c h  by  p r o p o s i n g  a 
c lass i f icat ion scheme wi th in  which  all even -even  nuclei  whose  va lence  
nuc leons  be long  to a given m a j o r  shell  are  un i t ed  in two symplec t ic  mult i -  
plets .  This  enab les  us to t rea t  in a unif ied way  the ent ire  spec t rum for each 
shell ,  which  a l lows us to reveal  bo th  exist ing regular i t ies  and  the typ ica l  
fea tures  o f  the  different  shells.  
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In order to clarify the classification problem under consideration, it is 
useful to introduce the concept of the generalized dynamical group (GDG).  
By a dynamical group (DG) we mean, as usual (Dashen and Gell-Mann, 
1965; Bohm and Barut, 1965; Dothan et al., 1965a), a group which gives 
the actual energy of a quantum mechanical system. In the case of the 
application of the DG concept to the description of the collective nuclear 
properties, one appropriately chosen irreducible representation of the DG 
gives the entire spectrum of the collective states of a given nucleus. By a 
G D G  we mean a group beyond DG. One irreducible representation of 
G D G  gives the entire spectrum of the collective states not of one, but of a 
sequence of nuclei. In other words, by means of GDG,  sequences of nuclei 
together with their collective states are united in common multiplets. It is 
evident that 

G D G  D DG 

In this way the introduction of GDG leads to the description of the energy 
spectra of series of nuclei in a unified way, i.e., by means of a common 
Hamiltonian, whose coefficients are the same for a given sequence of  nuclei. 

Different candidates for DG as a group for the description of the 
collective states of the even-even nuclei have been proposed in the literature 
since the pioneering work of Elliott (1958), who was the first to investigate 
the role of SU(3) for the description of light nuclei. In particular we mention: 

SL(3,  R )  (Weaver and Biedenharn, 1970). 
Sp(6, R )  (Raychev, 1972; Afanasjev and Raychev, 1972; Rosensteel 

and Rowe, 1976). 
SU(3) (Ratna Raju et aL, 1973; Raychev and Roussev, 1978). 
Sp(12, R) (Vanagas et aL, 1975; Heyde et aL, 1984). 
U(6), IBM-1 (Arima and Iachello, 1975; Janssen et aL, 1974; Kyrchev, 

1980). 
U(6), interacting vector boson model (Georgieva et al., 1982). 
U(6) |  U(6), IBM-2 (Arima et al., 1977). 
In the common case, the set of collective solutions is infinite and 

respectively DG is noncompact,  i.e., the irreducible representations of DG 
are infinite. Sometimes the problem can be approximated by finite sets of 
solutions and the DG should be compact. The question of the choice of 
DG is still open. 

As mentioned above, in the case of IBM-2 the dynamical group is 
DG -= U,~(6) | U~(6) [the notations are from Elliott (1985)]. When the boson 
number N is fixed, the different irreducible unitary representations (IURs) 
of U~(6)| U~(6), corresponding to different nuclei, are labeled by the third 
projection Fo of the F spin. The direct sum of the spaces of these representa- 
tions coincides with the space of one most symmetric representation of the 
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group U(12) labeled by N. Thus, sequences of  nuclei together with their 
collective states can be united in common multiplets and the group U(12) 
(Elliott, 1985; Frank and van Isacker, 1985; Solari et al., 1987) arises as a 
GDG.  

Now the problem is to generalize this scheme so that the even-even 
nuclei, whose valence nucleons occupy the same major nuclear shell, can 
be treated in a unified way. One possible way is to extend U(12) to the 
symplectic Sp(24, R), i.e., to consider Sp(24, R) as a GDG.  This possibility 
is discussed in Sections 2 and 3. In particular, in Section 2, the algebraic 
construction of the extension U(12)-*Sp(24, R) is given. In Section 3 a 
classification scheme is introduced. According to this scheme the even-even 
nuclei with valence nucleons belonging to a given major shell are united 
in two Sp(24, R) multiplets. However, as shown in Section 3, the consecutive 
realization of  this extension leads to some difficulties. Thus, there arises an 
asymmetry when the collective states of  nuclei, similar in their nature, are 
described by means of  IURs of the D G -  U=(6) |  U~(6) that essentially 
differ in their dimensions. There appear  unphysical states, which requires 
the introduction of a proper  selection rule. 

In Section 4 an alternative approach is proposed,  which holds if, 
neglecting for the time being the problem of the description of the collective 
nuclear states, one concentrates only on the problem of the classification 
of the nuclei. This approach is based on the group Sp(4, R) as a nuclear 
classification group (CG). In this case the even-even nuclei are again united 
in two Sp(4, R) multiplets arranged in the same order as in the Sp(24, R) 
scheme. As for the description of the collective states, we suppose that 

G D G  ~ C G |  D G  
II 
Sp(4, R) 

Here we do not fix the groups DG and G D G ,  respectively--the problem 
of their proper  choice is beyond the purpose of this paper. The important 
point is that now there is no asymmetry, which appears in the Sp(24, R) 
scheme. The members of  each Sp(4, R) multiplet are uniquely determined 
by their mass number  A and charge Z. That is why the energy spectrum of 
the multiplet as a whole should depend on these quantitites. 

In Section 5 the Sp(4, R) multiplets corresponding to the major nuclear 
shells at A-> 40 are discussed. A qualitative analysis of  the spectrum of  the 
2 + ground and quasiground levels is carried out. This analysis shows the 
expediency of  the classification scheme p roposed - - a  periodic structure of  
one and the same type is observed in the different shells. This periodic 
structure is especially stable in the case of  the heavy and superheavy nuclei. 
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2. ALGEBRAIC CONSTRUCTION OF THE EXTENSION 
U(12) ~ Sp(24, R) 

In IBM-2 two types of boson creation (~r + and v +) and annihilation 
(Tra and va) operators (a = 0, 1 , . . . ,  5) are introduced. The bilinear products 

+ + 
~ra~rb and va vb generate the "pro ton"  and "neutron" U(6) groups, i.e., 
U~(6) and U,(6). The introduction of the operators rr+Vb and v~ +~b extends 
the u~(6)O u~(6) algebra to u(12). With the help of boson operators one 
can define only the most symmetric representations of u~(6), u~(6), and 
u(12) labeled by N=, N~, and N =  N=+N~, respectively. From the gen- 

q- + 
erators of U(12) one can construct the sums 7raTrb + v~ vb, which generate 
the "mixed" U=~(6) group, and also the operators 

5 5 

F+ Z + F _ = Y  + Fo = '  = ~ ~ ,  ~a~o,  ~ ( N ~ - N ~ )  
a = O  a ~ O  

5 + 5 + 
(where N~ =Y~=o 7r~-~ and N~=Y,~= o v~G),  which generate the F-spin 
group SUF(2). This corresponds to the decomposition U(12)D U~.(6)|  
SUF(2). 

The extension of u(12) to sp(24, R) can be done in a natural way [the 
common case of sp(4k, R)  is discussed in Georgieva et al. (1985)]. The 
boson representation of sp(24, R) (Itsykson, 1967) is obtained by the addi- 

7"l" a qT  b , 1.P a , tion of raising + § +v~ + + ~',vb) and decreasing (~'~Trb, l " a l " b ,  q ' f a P b )  

operators to the generators of U(12). All most symmetric representations 
of u(12) labeled by N act in spaces whose direct sum coincides with the 
space ~ of the boson representation of sp(24, R). The latter is reducible 
and decomposes into two irreducible ones. The first acts in the space ~+,  
where the spectrum of N is even, and the second acts in the space ~ _ ,  
where N is odd ( ~ =  ~ + @ ~ _ ) .  

The groups SUF(2) and U,~(6) are mutually complementary (Mosh- 
insky and Quesne, 1971), which leads to the following relation for their 
second-order Casimir operators: C~ 6~ = 2F 2 + 4N  + �89 2. Hence, when N is 
fixed, the eigenvalues F ( F +  1) of F 2 give the IURs of both SUF(2) and 
U~(6).  Further, it is obvious that when N and F are fixed, there arise 
2F  + 1 equivalent representations of U~(6)  labeled by Fo = - F , . . . ,  F. Thus, 
one obtains the following reduction scheme: 

N F 2 F o 

sp(24, R) ~ u(12) , suF(2)@u~,(6) ~ u~(6)  (1) 

On the other hand, in the space ~ there acts a reducible unitary 
representation, namely the ladder representation, of the algebra u(6, 6) 
(Dothan et al., 1965b; Todorov, 1966). The corresponding Weyl generators 
of U(6, 6) are 

+ + -t- + 

7T  a "JTb ~ 77" a l / b  , - -  lda'dTb , - -  lY a ld b 
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This representation splits into irreducible ones (ladders), labeled by the 
first-order Casimir operator of U(6, 6): 

C ~  6'6) = 2Fo - 6 

In the space of each ladder (Fo fixed) there acts an infinite set of IURs of 
the algebra u~(6)E)u~(6) (steps) labeled by N. The reduction 

u~(6)O u~(6) ~ u~(6)  

can be obtained by means of  F2(C~6)). Finally, instead of (1), one has 

F o N F 2 
sp(24, R)  , u(6,6) , u~(6)Ou~(6) , u~(6)  (2) 

Reduction schemes (1) and (2) are written in terms of algebras. We recall 
that the IURs of the group U(n) and the corresponding IURs of the algebra 
u(n) act in the same spaces. 

The general case sp(2dn, R)  ~ u(p, q )O  u(n),  p + q = d, was investi- 
gated by Quesne (1986); when n = 1, p = q = k (d =2k)  this reduction can 
be written as sp(4k, R)  ~ u(k, k). From a mathematical point of view both 
schemes (1) and (2) are equally appropriate for the description of all IURs 
of u.~(6) acting in Yg. 

The splitting of  the spaces Y(• corresponding to the reductions 

vo/./-/sp(24, R ) ~ N  

u(6' 6)~N~.." / ~ 0  ~u(12)  

~ u = ( 6 ) O  u~(6) 

is shown schematically in Figure 1, where the columns represent the ladders 
defined by Fo and the rows represent the IURs of  u(12) defined by N. Each 
cell corresponds to a given IUR of U~r(6)O U~(6). 

0 -1 -2 .  .o~ 2 1 

7 1 

F 3 5  

Fig. 1. The splitting of Y(+ (N even) and Y(_ (N odd) corresponding to the reductions 
sp(4k, R) ~ u(k, k) ~ u(k)• u(k) and sp(41g R) ~ u(2k) ~ u(k)~) u(k), k = 1, 6. 

a) H. 5) H 
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3. CLASSIFICATION SCHEME BASED ON THE EXTENSION 
U(12)~  Sp(24, R) 

In IBM-2 the proton and neutron boson numbers N~ and N~ are found 
by counting the valence proton and neutron pairs (or hole pairs) of a given 
nucleus from the nearest closed shell. The quantities N and Fo (see, for 
instance, Elliott 1985) are defined by 

N =  N,, + N~, Fo=I(  N ~ -  N~) (3) 

In various papers dealing with IBM-2 the following four possibilities to 
count N~ and N~ are used: 

(i) From proton and neutron particles. In this case one has 

N7 r __~ 1( N p  - ~ r r n a g )  . ,p  ,, S~ = �89 - S mag) (4) 

where Np and Nn are the total proton and neutron numbers of the nucleus 
and ~]-mag and ~/mag ~.p . .n  are the corresponding magic numbers. Therefore 

N = � 8 9  F o = � 8 9  Mn~ ag) (5) 

where A =  N p + N n  is the mass number and M T = � 8 9  is the third 
projection of  the isospin. 

(ii) From proton and neutron holes. Then 

1 m a g  K? - -  1 (  AAfmag - -  M T  ) (6) N = ~(A - A), �9 o - 2~,,- T 

and the difference between this case and the previous one is not significant. 
(iii) From proton particles and neutron holes. Then 

AArmag F 0 = ](A - A mag) N = MT - I,, r , 

(iv) From proton holes and neutron particles. Then 

~ / l r m a g  ~tA S = ~,, T ~"T, Fo = �88 A) 

We do not stick to the interpretation of N~ and N~ as numbers of real 
pair excitations in nuclei. The physical sense of N and Fo is revealed by 
their expressions in terms of A and MT. From this point of view it is evident 
that compared with cases (i) and (ii) the physical meaning of N and Fo in 
cases (iii) and (iv) is exchanged. But in order to describe the even-even 
nuclei in a unified way a uniqueness in the understanding of N and Fo is 
necessary. Moreover, if we want to introduce a classification scheme accord- 
ing to which the even-even nuclei from a given major shell are united in 
common multiplets, then it is not acceptable to assume that for the first 
half of the shell N and Fo are given by (5) and for the second half by (6). 
In our opinion the most natural way to count N~ and N~ is given by (4). 
Then N and Fo are defined by (5) and the even-even nuclei from a given 
major nuclear shell are enumerated by the values of the pair (N, Fo). 



C l a s s i f i c a t i o n  o f  t h e  E v e n - E v e n  N u c l e i  

T a b l e  1. Multiplet (20, 20128, 28)_ 

Fo 

N 1/2 -1 /2  -3 /2  

1 42Ti 42Ca 
3 46Cr 46Ti 46Ca 
5 5~ 5~ 5~ 
7 54Ni 54Fe 

775 

A major  nuclear shell is defined by a pair of  two double magic numbers 
(Np,  N'~) and (Np, N"~ where ' < " and ' < N'~'. " n,', Np Np N, The even-even 
nuclei whose valence nucleons belong to this shell can be united in two 
symplectic multiplets in the following way. 

The double magic number  (Np, N~) corresponds to the vacuum state 
( N - 0 )  in Yr. Using formulas (4) and (5), one finds N,~ and N~, and 
respectively N and Fo. Then each nucleus corresponds to a definite cell in 
the space Yf+ or Yg_, which represents a given IUR of u~(6)Ou~(6) (see 
Figure 1). The symplectic multiplets obtained in this way will be denoted 
by (N'p, N',,[Np, N~)+ if N is even and by (N'p, N'IN~, N~) if N is odd. 
In Yg+ and Y(_ these multiplets form closed figures restricted by the condi- 
tions 0-<N~ 1 ,, l~r,r,, r,r,~ 0_< <-~(Np-Np) and 0 - < N ~ - < ~ t l , ~ - l , n ) ,  so that N_< 
� 8 9  In other words, the space of the even-even nuclei whose valence 
nucleons belong to a given major shell is mapped  onto two finite subspaces 
of  g+  and ~ _ ,  respectively. Within these figures the spectrum of Fo is also 
restricted: i , 1 ,, 3(N,,-N'~) N'p). This runs over -< Fo -< ~(N;  - quantity all its 

�9 . . , / ~ / . ~  1[  N / "  admissible values Fo = -N/2,  N/2 if and only if ~, - 5 t ~ , ,  - N ' )  and 
N ~ " <--~(Np- Np). The sides of  the figures correspond to closed neutron or 
proton shells. Each row includes nuclei belonging to a given isobar, and 
each column includes nuclei belonging to a given isofer. Tables I - V I I I  are 

Table 11o Multiplet (20,28128, 50)_ 

fo 

N 3/2 1/2 -1/2 

1 5~ 5~ 
3 S4Fe 54Cr 54Ti 
5 58Ni SaFe 58Cr 
7 62Ni 62Fe 
9 66Ni 
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Table III. Multiplet (28,28150,50)_ 

Fo 

N -1/2 -3/2 -5/2 -7/2 -9/2 

1 5SNi 
3 62Zn 62Ni 
5 66Ge 66Zn 
7 7~ V~ 
9 74Kr 74Se 

11 78Sr 7SKr 
13 S2Zr S2Sr 
15 86Zr 
17 9~ 
19 94Ru 
21 98Cd 

66Ni 
7OZn 
74Ge 
78Se 
SZKr 
S6Sr 
9OZr 

74Zn 
7SGe 78Zn 
82Se 82Ge 
86Kr 

examples of symplectic multiplets formed in the way described above. The 
nuclei of a given multiplet are uniquely defined by means of N and Fo. 

It has been mentioned above that each nucleus corresponds to a 
subspace of  Y( where a definite IUR of u=(6)Gu~(6) acts. That is why it 
is reasonable to clarify the sense of the vectors belonging to this subspace. 
If we assume, in the spirit of  IBM-2, that this is the space of the collective 
states of the nucleus under consideration, then the product U , (6 ) |  U~(6) 
arises as a DG, and the group Sp(24, R) as a GDG. These exist however, 

Table IV. Multiplet (28, 50150, 82) 

Fo 

N 9/2 7/2 5/2 3/2 1/2 -1/2 -3/2 -5/2 

3 84Se S4Ge 
5 SSSr SSKr 88Se 
7 92M0 92Zr 92Sr 92Kr 
9 96pd 96Ru 96M0 96Zr 965r 

11 l~176 I~176 l~176 I~176 l~176 
13 l~ 1~ l~ t ~  1~ 
15 t~ I~ l~ I~ 
17 II2Sn lI2Cd ltzPd 
19 ll6Sn ll6Cd 
21 12~ 
23 
25 
27 

~OOSr 

tOSMo 
112Ru 
ll6pd 
12~ 

124Sn 124Cd 
12SSn 

132Sn 
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Table V. Multiplet (50, 50182 , 82)_ 

777 

Fo 

N -1/2  -3 /2  -5 /2  -7/2  -9 /2  -11/2 -13/2 -15/2 

3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 

IO6Te lO6Sn 
ltOXe HOTe ~OSn 

114Xe ll4Te llasn 
t~SXe -8Te llSSn 
t22Ba 122Xe taaTe t22Sn 
126Ce 126Ba 126Xe 126Te 126Sn 
130Nd 130Ce 130Ba 130Xe 130Te 130Sn 
134Sm 134Nd 134Ce 134Ba 134Xe 134Te 
138Gd 138Sm 13aNd 138Ce t38Ba 

142Gd 142Sm lnaNd 
146Dy 146Gd 
~50Er 

154Hf 

Table VI. Multiplet (50, 82]82, 126)_ 

Fo 

N 11/2 9/2 7/2 5/2 3/2 1/2 -1/2 -3 /2  -5 /2  -7/2 

1 ~34Te 1345n 
3 138Ba 138Xe 138Te 
5 142Nd 142Ce 142Ba 142Xe 
7 146Gd t46Sm 146Nd 1466e 146Ba 
9 lS~ I5~ 15~ iS~ JS~ IS~ 

11 15'*Hf 154yb 154Er lSaDy 154Gd ~S4Sm 15aNd 
13 15SW lSSHf 158yb 15SEr 158Dy tSSGd 158Sm 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 

162 w 162Hf 162yb 162Er 162Dy 162Gd 
166Os 166 w 166Hf 166yb 166Er 166Dy 
170pt 170Os 170 w 170Hf 170yb t70Er 

174pt 174Os 174 w 174Hf 174yb 
178Hg 178pt 178Os 178 w 178Hf 178yb 

182Hg 182pt t82Os 182 w tSZHf 
Js6pb 186Hg 186pt 1860s 186 w 

190pb 190Hg 190pt 190Os 190 w 
194pb 194[.]g 19apt 1940s 

19spb ~'~SHg 19Spt 
2~ 2OeHg 

2o6pb 2O6Hg 
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Table VII. Multiplet (82, 821126, 126)_ 

Fo 

N -11/2 -13/2 -15/2 -17/2 -19/2 -21/2 

11 186pb 
13 19~ 
15 194p0 194pb 
17 198p0 198pb 
19 2~ 2~ 2~ 
21 2~ 2~ 2~ 2~ 
23 21~ 2t~ 21~ 
25 2~4Th 214Ra 

some objections against the classification scheme realized above. First, it 
should be mentioned that nuclei similar in their nature are described by 
different IURs of u~(6)@u~(6).  Thus, if one compares two double magic 
nuclei belonging to the same multiplet, for instance 132Sn and 2~ belonging 
to the multiplet (50, 82[82, 126)+, then it is evident that in the case of mSn,  
N and Fo are equal to zero and the u~(6)@ u~(6) space is one dimensional 
(it coincides with the vacuum vector in ~ ) .  At the same time, the nucleus 
2~ is given by N = 38 and Fo = - 3  and the corresponding u=(6)@ u~(6) 
space is of a very great dimension. This asymmetry, which leads to the 
appearance of unphysical states, is avoided in the original version of IBM-2 
(Arima et aL, 1977), where in the first half of the shell the bosons are 

Table VIII. Multiplet (82, 126]..) 

/7O 

N 3/2 1/2 -1/2 -3/2 -5/7 -7/2 

1 21~ 21~ 
3 214Ra 214Rn 214p0 214pb 
5 218Th 218Ra 218Rn 2tSPo 
7 222U 222Th 222Ra 222Rn 
9 226U 226Th 226Ra 226Rn 

11 23~ 2X~ 23~ 
13 234pu 234U 234Th 
15 238Cm 238pH 238U 
17 242Fm 242Cf 242Cm 242pu 
19 246Fm 246Cf 246Cm 
21 25~ 25~  25~ 
23 254N0 254Fm 
25 258No 

242 U 
246pu 
25OCm 
254Cf 
258Fm 
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counted as particle pairs and in the second half as hole pairs. On that 
account, however, there is no way to consider in IBM-2 all even-even nuclei 
from a given major shell in a unified way. 

One possible way to overcome the difficulties connected with the 
asymmetry, which appears in the Sp(24, R) scheme, is to introduce a proper 
selection rule for the elimination of the unphysical states. In the next section, 
concentrating only on the classification of the nuclei, we propose an alterna- 
tive approach. This approach is based on the group Sp(4, R),  which is 
introduced as a nuclear classification group (CG). 

4. Sp(4, R)  AS A NUCLEAR CLASSIFICATION GROUP 

As mentioned above, the eigenvalues of the operators N and F0 
uniquely determine the nuclei from a given symplectic multiplet. These 
operators belong to a representation of sp(4, R)  [sp(4, R ) ~  sp(24, R)], 

+ + + + + + 
which is given by the following generators: ~a ~r~, v~ va, 7ra ua , 7rarra, vava, 

+ + + + 
~va ,  ~alr~, v~v~, 7r~z,~, v~Tr~ (summation over the index a). Hence, the 
classification problem we are interested in can be associated only with the 
algebra sp(4, R). The standard boson representation of sp(4, R)  can be 
simply constructed with the help of "one-dimensional" creation (~-+, v +) 
and annihilation (Tr, v) operators. The corresponding generators of Sp (4, R) 

-- + + 
are: 7r+Tr +, v+v +, 7r+u , 7rTr, vv, ~v, 7r+Tr, v+v, 7r v, v 7r. In other words, 
further, we do not consider the embedding sp(4, R ) c s p ( 2 4 ,  R). The 
operators we need now are of the form 

N~ = ~'+Tr, N~=v+v, N = N ~ + N v  

F§ F_ § F0 = l  1~r~(1'1)+ 1) ~(N~  - N~) ~ , ~ ,  

where C~ ~'~ is the first Casimir operator of U(1, 1). The space of the boson 
representation of sp(4, R) will be denoted again by ~. This representation 
splits into two irreducible ones that act in the subspaces ~f+ and gf_ of ~. 
The structure of ~+ and ~_  is again given by Figures la and lb, respectively, 
but now the rows represent the IURs of u(2), labeled by N, and the columns 
represent the IURs of u (1, 1), labeled by F0. The cells correspond to different 
IURs of u~,(1) @ u~(1), defined by (N~, N~) or, which is the same, by (N, Fo). 

The physical meaning of the quantities N~, N~, N and Fo is again given 
by formulas (4) and (5). Further, the nuclei are arranged in symplectic 
multiplets [now sp(4, R) multiplets] in the same way as in the case of 
sp(24, R), described in the previous section, but now each nucleus corre- 
sponds to a given IUR of  u~(1)Ou~(1) [see Tables I-VIII; the notations 
(N';,  N~[N~, N~)~ are also preserved]. Each row of a given sp(4, R)  
multiplet contains nuclei belonging to a given u(2) submultiplet, and each 
column contains nuclei from a given u(1, 1) submultiplet. 
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In this way the group Sp(4, R) arises as a nuclear classification group 
(CG). The IURs of u~(1)Qu~(1) are one-dimensional, which means that 
the scheme proposed does not give a possibility for a description of the 
nuclear states, i.e., the problem of the choice of the DG and GDG, respec- 
tively, remains open. On the other hand, now there is no asymmetry as 
appeared in the case of the Sp(24, R) scheme. 

5 . 2  + E N E R G Y  S P E C T R U M  

The qualitative analysis of the energy spectra of the even-even nuclei 
with Np >- 20 and Nn -> 20 (this is the region where the collective effects are 
rather strongly expressed) reveals the advantages of the sp(4, R) 
classification scheme proposed above. Figures 2-9 represent the N depen- 
dence (at Fo fixed) of the 2 + levels of the ground (quasiground) bands for 
the multiplets given in Tables I-VIII. Here, for the sake of brevity, only 
multiplets of the type (N',, N',,IN'~, N~)_ (N is odd) are considered. For 
N even the picture is analogous. The experimental data are from Sakai 
(1984) and the Nuclear Structure Group (1985/86). 

The 2 + spectra given in Figures 2-9 show the existence of common 
features, which repeat from shell to shell. The u(1, 1) curves (Fo fixed) of 

1.8 

> 

LU 

[ I I I Fig. 2. Multiplet (20, 20]28, 28)_. Dependence of the 2 + 
1 3 5 7 n levels on N at fixed F o (see Table I). 
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Fig. 3. Multiplet (20,28128, 50)_. Dependence 
of  the 2 + levels on N at fixed F o (see Table II). 

1.8 

A 

> 
c ~ '~/?" ,"v 

\ .-,"// 

l I I I I 

1 3 5 7 9 N  

each multiplet are differentiated as a rule and exhibit a similar behavior-- the 
curves increase toward the ends, corresponding to a proton or neutron core, 
and decrease toward the middle. The similarity of the curves is an indication 
of the existence of a periodic structure of  the shells under consideration. 
This intrinsic periodic structure is especially stable in the case of the 
multiplets (50, 50182,82 ) (Figure 6), (50, 82182 , 126)_ (Figure 7), and 
(82,1261.-)_ (Figure 9) [the same is valid for (50,50182,82)+, 
(50, 82182, 126)+, and (82, 1261.. )+]. A strong deviation is observed in the 
behavior of  the curve with Fo = 3/2 of the multiplet (28, 50150 , 82)_ (Figure 
5), where the low-lying 2 + levels of 92Sr (E2--  = 0.815 MeV) and especially 
of 96Zr (E2+ = 1.751 MeV) are rather high. This deviation as well as the 
behavior of the 2 + spectrum in the region 7-< N-< 11 of the multiplet 
(28, 50[50 , 82)_ (Figure 5) need special attention. In some sense the 2 + 
spectrum of the multiplet (28,28150, 50)_ shown in Figure 4 is also 
anomalous. Analogous anomalies exist in the multiplets (28, 50150 , 82)+ and 
(28, 28150, 50)+ as well. 

The multiplet (82, 126I-.)_ (Figure 9) contains superheavy nuclei, 
whose valence nucleons belong to an unclosed major shell. By analogy with 
the other multiplets, one expects that the 2 + levels should grow toward the 
next region of  stability. The behavior of the u(1, 1) curves given in Figure 
9 shows a relative remoteness from this region--no tendency to any increas- 
ing of the curves at higher N is observed. 
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Fig. 4. Multiplet (28, 28150, 50)_. Dependence of the 2 + levels on N at fixed F o (see Table III). 

The rotational regions of the multiplets (50, 82[82, 126) (Figure 7) and 
(82, 126[.. ) (Figure 9) are very well expressed. A slight (almost constant) 
N dependence (at F0 fixed) of the 2 + levels is observed in these regions. 
Another typical feature is the convergence of the u(1, 1) curves of the 
multiplet (82, 126[--)_ at N-> 9 (Figure 9). The same picture is observed in 
the rotational regions of the multiplets (50, 82[82, 126)+ and (82, 126[.. )+. 
It should be noted that yon Brentano et aL (1985) united the rotational 
nuclei~56Dy-l~aHg (/=o=2) and 158Dy-lS2Pt (/=o=3) from the multiplets 
(50, 82182, 126)+ and (50, 82182, 126)_, respectively, in two F-spin multi- 
plets, where N and Fo are defined as in case (iii) described in Section 3. 
Harter et al. (1985) united three series of nuclei in F-spin multiplets as 
follows: 124Te-t4~ with Fo = -5  from (50, 50[82, 82)+, 122Te-]42Sm with 
Fo = - 9 / 2  from (50, 50182, 82)_ [in both cases N and Fo are defined as in 
case (iii) of Section 3], and 186W-186Hg with N = 27 from (50, 81182, 126)_ 
[N and Fo are defined as in case (ii) of Section 3]. 
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2 [. ~ ~ Fo= 7/2 

ILl L tP  ~ 

[ \  \ \  \ - ,, ~ , , ' , ~  

~,=7/2 
F~ , 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

Fig. 7. Mult iplet  (50, 82182, 126)_. Dependence  of  the 2 + levels on N at fixed F o (see 
Table VI). 

The neighboring nuclei in the u(1, 1) multiplets differ in an c~ particle, 
which is consistent with hypothesis of c~ clustering in nuclei (Gambhir  
et aL, 1983). A fairly good description of the spectra of the nuclei 1 3 6 T e - ] 6 8 E r  

(Fo = 0) from the multiplet (50, 82182, 126)+ is obtained in a unified way in 
the framework of the so-called "quartet model"  (Dukelsky et al., 1982), 
where the "quartet bosons" represent quartets of two protons and two 
neutrons. The quartet effects in the rare-earth nuclei are also considered by 
Daley et al. (1986). 

By interpolation we predict the levels (in MeV) 

]62Gd:  E 2 + ~ 0 . 0 7 5 ;  168Dy: 0 . 0 7 3 - < E 2 + _ < 0 . 0 8 2  

172Er: 0.073_< E2+_<0.082; 234pu:  E2+~0.04 

246Cf: E2+ ~ 0.043 

1.5 
> 

I.H 
1 

~'-- (7) l , i ~ ;  

�9 , ~.o i , v /  / 

"~ ~=-17/2 

Fig. 8. Mult iplet  (82, 821126 , 126)_. Depen-  
I I I I l I I dence  of  the 2 + levels on N at fixed F o (see 

15 17 19 21 23 25 27 N Table Vll). 
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Fig. 9. Multiplet (82, 126 t -. )_. Dependence 9fthe 2 + levels on N at fixed F o (see Table VIII). 

Thus, the analysis carried out in this paper shows the expediency of 
the unification of the even-even nuclei with Np >- 20 and N,  -> 20 in symplec- 
tic multiplets. It should be noted that the Hamiltonian, which should 
describe the energy spectrum of a given symplectic multiplet as a whole, 
must depend on N~ and N~, or, equivalently, on N and F0. The similarity 
of the u(1, 1) curves [well expressed in the multiplets (50,50]82,82)• 
(50, 82182, 126)• and (82, 126[.. )• inspires the search of the explicit form 
of this dependence. This problem will be discussed in a forthcoming paper. 
Note also that the u(1, 1) curves belonging to sequences of sp(4, R) multi- 
plets can be united in common curves under the condition Np - N, fixed. 
Then a periodic variety of the spectrum from one major shell to another is 
observed. 
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